Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dimethyl 2-(aminomethylene)malonate

Martin Gróf, ${ }^{\text {a* }}$ Jozef Kožíšek, ${ }^{\text {a }}$ Viktor Milata ${ }^{\text {b }}$ and Anton Gatial ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and ${ }^{\text {b }}$ Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 81237, Slovak Republic
Correspondence e-mail: martin.grof@stuba.sk

Received 24 April 2008; accepted 30 April 2008
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.091 ; w R$ factor $=0.261$; data-to-parameter ratio $=13.4$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{4}$, which is an example of a push-pull alkene, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions stabilize the crystal structure.

Related literature

For related literature, see: Bouzard (1990); Chemla \& Zyss (1987); Cook (1969); Freeman (1981); Nalwa et al. (1997); Shmueli et al. (1973).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{4}$

$M_{r}=159.14$
Monoclinic, $P 2_{1} / c$
$a=9.3410$ (19) \AA
$b=6.9000(14) \AA$
$c=11.725$ (2) \AA
$\beta=97.58$ (3) ${ }^{\circ}$
$V=749.1(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.43 \times 0.27 \times 0.06 \mathrm{~mm}$

Data collection

Oxford Diffraction GEMINI R diffractometer
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006)
$T_{\text {min }}=0.892, T_{\text {max }}=0.998$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.091 \quad 102$ parameters
$w R\left(F^{2}\right)=0.261$
$S=0.99$
1368 reflections

14185 measured reflections 1368 independent reflections 841 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.089$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1$	0.86	2.02	$2.638(2)$	128
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 2^{\mathrm{i}}$	0.86	2.02	$2.848(2)$	161

Symmetry code: (i) $x, y+1, z$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

The authors thank the Grant Agency of the Slovak Republic, grant Nos. APVT-20-007304 and VEGA 1/0817/08, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2703).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Bouzard, D. (1990). Recent Progress in the Chemical Synthesis of Antibiotics, p. 249. München: Springer-Verlag.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chemla, D. \& Zyss, J. (1987). Optical Properties of Organic Molecules and Crystals, Vol. 1, pp. 23-187. New York: Academic Press.
Cook, A. G. (1969). Enamines: Syntheses, Structure and Reactions. New York: Marcel Dekker.
Freeman, F. (1981). LONZA Reaction of Malononitrile Derivatives, p. 925. Stuttgart: Georg Thieme Verlag.
Nalwa, H. S., Watanabe, T. \& Miyata, S. (1997). Nonlinear Optics of Organic Molecules and Polymers, pp. 87-329. Boca Ranton: CRC Press.
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shmueli, U., Shanan-Atidi, H., Horwitz, H. \& Shvo, Y. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 657-662.

supplementary materials

Dimethyl 2-(aminomethylene)malonate

M. Gróf, J. Kozísek, V. Milata and A. Gatial

Comment

The title compound (I), aminomethylene-malonic acid dimethyl ester belongs to the family of so-called push-pull ethylenes. Push-pull ethylenes with the general formula $R^{1} X-\mathrm{C} R^{2}=\mathrm{C} R^{3} R^{4}$ are highly reactive organic compounds with electron donor groups at one end and strong electron acceptor groups at the other end of ethylenic $\mathrm{C}=\mathrm{C}$ double bond. Very often $R^{2}=\mathrm{H}$ and for $X=\mathrm{NH}$ or $\mathrm{N} R^{1}$ and $X=\mathrm{O}$ as the electron donor groups R^{1} can be hydrogen, alkyl, cycloalkyl, aryl or hetero(aryl) groups. On the other side as the electron acceptors R^{3}, R^{4} are groups such as $-\mathrm{CN},-\mathrm{COR},-\mathrm{COO},-\mathrm{SO}_{2} \mathrm{CH}_{3}$, and $-\mathrm{NO}_{2}$. Mainly enamines ($X=\mathrm{NH}, \mathrm{N} R^{1}$) are frequently used as reactants or intermediates in chemical syntheses of drugs, polymers and dyes (Bouzard et al., 1990, Cook et al., 1969). But also alkoxymethylenes $(X=\mathrm{O})$ are often used in organic synthesis (Freeman et al., 1981).

Due to the opposite character of the substituents, the olefinic $\mathrm{C}=\mathrm{C}$ double bond order is reduced and accompanied by increased bond orders of bonds between the olefinic carbon atoms and their electron donor and electron acceptor groups. This leads to the substantial decrease of the rotational barrier about the $\mathrm{C}=\mathrm{C}$ double bond and to the increase of an analogues barrier about the adjacent bonds. These changes are connected with the separation of positive and negative charges and electron delocalization within the π-electron system. Such compounds belong to the most developed structures in the search for new compounds with non-linear optics responses (Nalwa et al., 1997, Chemla et al., 1987).

The study of a similar compound, dimethyl-(dimethylaminomethylene)-malonate, has been done (Shmueli et al., 1973). This study revealed that dimethyl-(dimethylaminomethylene)-malonate exists in solid phase as ZE conformer (Z denotes towards to $\mathrm{C}=\mathrm{C}$ double bond orientation of the carbonyl oxygen in trans position; E denotes away from $\mathrm{C}=\mathrm{C}$ double bond orientation of the carbonyl oxygen in cis position). The study of aminomethylene-malonic acid dimethyl ester revealed that this compound exists in solid phase as EZ conformer. The $=\mathrm{C}-\mathrm{N}$ bond length of 1.301 (4) \AA in the title compound is somewhat shorter than in the case of dimethyl-(dimethylaminomethylene)-malonate ($1.337 \AA$). The $\mathrm{C}=\mathrm{C}$ bond length of 1.385 (5) \AA is slightly longer than in the case of dimethyl-(dimethylaminomethylene)-malonate ($1.380 \AA$). The $=\mathrm{C}-\mathrm{C}$ trans and cis bond lengths are 1.470 (4)/1.456 (5) \AA, respectively in the title compound and $1.442 / 1.488 \AA$ in dimethyl-(di-methylaminomethylene)-malonate.

Experimental

To dimethyl 3-methoxymethylenemalonate ($1.74 \mathrm{~g}, 10 \mathrm{mmol}$) in methanol (10 ml), an aqueous solution of ammonia (12 mmol) was added dropwise (amount according to concentration and density) over a period of 30 min with stirring. The slightly warmed mixture was stirred overnight at room temperature. The reaction mixture was then briefly heated to reflux (ca. 20 min). After ensuring that no starting derivative remained (thin-layer chromatography; Silufol 254, Kavalier Czechoslovakia; eluent chloroform-methanol $10: 1 \mathrm{v} / \mathrm{v}$, detection UV light 254 nm), the reaction mixture was evaporated on a vacuum evaporator and chromatographed on silica gel (eluent dichloromethane-methanol 10:1 v / v). Obtained product was recrystallized from minimal amount of chloroform and n-hexane mixture in refrigerator.

supplementary materials

The solid phase mid-IR vibrational spectrum was recorded with a Nicolet model NEXUS 470 FTIR spectrometer at room temperature. The measurement was performed after mixing the powdered sample with KBr into a pellet.

The mid-IR vibrational frequencies of aminomethylene-malonic acid dimethyl ester are (in cm^{-1}): $3460 \mathrm{w} ; 3358 \mathrm{~s} ; 3296$ vw; $3271 \mathrm{vw} ; 3222 \mathrm{~s} ; 3135 \mathrm{w}$, sh; $3025 \mathrm{~m} ; 3017 \mathrm{vw}$, sh; $2993 \mathrm{vw} ; 2962 \mathrm{~m} ; 2924 \mathrm{vw} ; 2907 \mathrm{vw} ; 1683 \mathrm{vs} ; 1658 \mathrm{vs} ; 1637 \mathrm{vs} ;$ 1576 vw , sh; $1534 \mathrm{~m} ; 1507 \mathrm{~s} ; 1499 \mathrm{~s} ; 1474 \mathrm{vw}, \mathrm{sh} ; 1461 \mathrm{w}$, sh; $1440 \mathrm{~s} ; 1433 \mathrm{w}$, sh; $1373 \mathrm{~s} ; 1331 \mathrm{~s} ; 1293 \mathrm{w} ; 1286 \mathrm{~s} ; 1221$ s; $1193 \mathrm{~m} ; 1176 \mathrm{w}$, sh; 1150 w , sh; $1141 \mathrm{~s} ; 1070 \mathrm{~s}, \mathrm{~b} ; 1033 \mathrm{w} ; 982 \mathrm{~m} ; 942 \mathrm{w} ; 828 \mathrm{w} ; 822 \mathrm{~m} ; 783 \mathrm{~s} ; 772 \mathrm{w} ; 750 \mathrm{vw} ; 715$ s, b; 669 w; 649 w, b; 617 m , sh, b; $589 \mathrm{~s} ; 480 \mathrm{~s} ; 440 \mathrm{~m}$.

Refinement

All H atoms were positioned geometrically and allowed to ride on their corresponding parent atoms at distances of $\mathrm{C}_{\text {methyl }}-\mathrm{H}$ $=0.96 \AA, \mathrm{C}_{\text {aromatic }}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, N)$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. Methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1. The atom-numbering scheme of aminomethylene-malonic acid dimethyl ester. Displacement ellipsoids are drawn at the 50% probability level.

Dimethyl 2-(aminomethylene)malonate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{4}$
$M_{r}=159.14$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.3410(19) \AA$
$b=6.9000(14) \AA$

$$
\begin{aligned}
& F_{000}=336 \\
& D_{\mathrm{x}}=1.411 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2135 \text { reflections } \\
& \theta=3.4-29.6^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1}
\end{aligned}
$$

$c=11.725(2) \AA$	$T=100 \mathrm{~K}$
$\beta=97.58(3)^{\circ}$	Block, colorless
$V=749.1(3) \AA^{3}$	$0.43 \times 0.27 \times 0.06 \mathrm{~mm}$
$Z=4$	

Data collection

Oxford Diffraction GEMINI R diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=100 \mathrm{~K}$
1368 independent reflections
841 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.089$
$\theta_{\text {max }}=25.3^{\circ}$
Rotation method data acquisition using ω and φ scans $\theta_{\min }=4.2^{\circ}$

Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
$T_{\text {min }}=0.892, T_{\text {max }}=0.998$
14185 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.091$
$w R\left(F^{2}\right)=0.261$
$S=0.99$
1368 reflections
102 parameters

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1927 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.005$
$\Delta \rho_{\max }=0.62 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.38$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods
$h=-10 \rightarrow 11$
$k=-8 \rightarrow 8$
$l=-14 \rightarrow 14$

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})
x
y
$z \quad U_{\text {iso }} * / U_{\text {eq }}$

O4	$0.9175(3)$	$0.2420(3)$	$0.85543(19)$	$0.0639(9)$
O2	$0.8250(3)$	$-0.0207(4)$	$0.92664(19)$	$0.0657(9)$
C3	$0.8357(3)$	$0.1536(5)$	$0.9256(3)$	$0.0475(9)$
N1	$0.7287(3)$	$0.6345(4)$	$1.0263(3)$	$0.0648(10)$
H1B	0.6717	0.6127	1.0768	0.078^{*}
H1A	0.7486	0.7517	1.0089	0.078^{*}
C2	$0.7644(3)$	$0.2942(5)$	$0.9935(3)$	$0.0460(9)$
C4	$0.7847(4)$	$0.4902(5)$	$0.9761(3)$	$0.0511(9)$
H4A	0.8455	0.5225	0.9222	0.061^{*}
C5	$0.9912(5)$	$0.1154(5)$	$0.7845(3)$	$0.0685(12)$
H5C	1.0455	0.1916	0.7368	0.082^{*}
H5B	0.9216	0.0384	0.7368	0.082^{*}
H5A	1.0555	0.0319	0.8327	0.082^{*}
O1	$0.6120(3)$	$0.3524(4)$	$1.1347(2)$	$0.0773(10)$
O3	$0.6559(3)$	$0.0457(3)$	$1.0934(2)$	$0.0594(8)$
C1	$0.6714(4)$	$0.2365(5)$	$1.0780(3)$	$0.0515(10)$
C6	$0.5661(4)$	$-0.0100(6)$	$1.1793(3)$	$0.0705(12)$
H6C	0.5600	-0.1487	1.1824	0.085^{*}
H6B	0.4711	0.0433	1.1596	0.085^{*}
H6A	0.6075	0.0385	1.2531	0.085^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O4	$0.0949(19)$	$0.0289(14)$	$0.0785(17)$	$-0.0010(12)$	$0.0514(14)$	$-0.0019(11)$
O2	$0.094(2)$	$0.0233(15)$	$0.0884(18)$	$-0.0009(11)$	$0.0449(15)$	$0.0022(11)$
C3	$0.065(2)$	$0.027(2)$	$0.0544(18)$	$-0.0036(14)$	$0.0236(16)$	$0.0017(13)$
N1	$0.090(2)$	$0.0235(17)$	$0.088(2)$	$-0.0033(14)$	$0.0392(18)$	$-0.0022(14)$
C2	$0.057(2)$	$0.0255(17)$	$0.0580(18)$	$-0.0039(14)$	$0.0172(16)$	$0.0018(14)$
C4	$0.067(2)$	$0.0299(19)$	$0.0601(18)$	$-0.0043(15)$	$0.0210(17)$	$0.0008(15)$
C5	$0.099(3)$	$0.037(2)$	$0.079(2)$	$0.0036(19)$	$0.049(2)$	$0.0008(18)$
O1	$0.111(2)$	$0.0312(15)$	$0.104(2)$	$-0.0012(13)$	$0.0689(17)$	$-0.0028(13)$
O3	$0.0900(18)$	$0.0217(14)$	$0.0756(15)$	$-0.0054(10)$	$0.0445(13)$	$0.0026(10)$
C1	$0.062(2)$	$0.030(2)$	$0.066(2)$	$-0.0002(14)$	$0.0221(17)$	$-0.0043(14)$
C6	$0.101(3)$	$0.039(2)$	$0.081(2)$	$-0.012(2)$	$0.047(2)$	$0.0024(19)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 4-\mathrm{C} 3$	$1.342(4)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	0.9600
$\mathrm{O} 4-\mathrm{C} 5$	$1.442(4)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9600
$\mathrm{O} 2-\mathrm{C} 3$	$1.206(4)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9600
$\mathrm{C} 3-\mathrm{C} 2$	$1.470(4)$	$\mathrm{O}-\mathrm{C} 1$	$1.219(4)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.301(4)$	$\mathrm{O} 3-\mathrm{C} 1$	$1.340(4)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	0.8600	$\mathrm{O} 3-\mathrm{C} 6$	$1.445(4)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.8600	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9600
$\mathrm{C} 2-\mathrm{C} 4$	$1.385(5)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9600
$\mathrm{C} 2-\mathrm{C} 1$	$1.456(5)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9600
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300		

sup-4

supplementary materials

$\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 5$	$115.6(3)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 4$	$120.9(3)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	$127.5(3)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	$111.6(3)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120.0
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	120.0
$\mathrm{H} 1 \mathrm{~B}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	120.0
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 1$	$118.3(3)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3$	$119.0(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.8(3)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 2$	$127.6(3)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	116.2
$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	116.2
$\mathrm{O} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	109.5
$\mathrm{O} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{C} 5-\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 2$	$-0.8(5)$
$\mathrm{C} 5-\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	$-179.6(3)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4$	$-176.8(3)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4$	$1.9(4)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$2.5(5)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$-178.8(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{N} 1$	$-0.7(6)$

$\mathrm{H} 5 \mathrm{C}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
O4-C5-H5A	109.5
H5C-C5-H5A	109.5
H5B-C5-H5A	109.5
C1-O3-C6	$116.0(3)$
O1-C1-O3	$120.4(3)$
O1-C1-C2	$123.1(3)$
O3-C1-C2	$116.5(3)$
O3-C6-H6C	109.5
O3-C6-H6B	109.5
H6C-C6-H6B	109.5
O3-C6-H6A	109.5
H6C-C6-H6A	109.5
H6B-C6-H6A	109.5
C3-C2-C4-N1	$178.6(3)$
C6-O3-C1-O1	$0.1(5)$
C6-O3-C1-C2	$178.6(3)$
C4-C2-C1-O1	$-0.8(5)$
C3-C2-C1-O1	$180.0(3)$
C4-C2-C1-O3	$-179.2(3)$
C3-C2-C1-O3	$1.5(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1$	0.86	2.03	$2.638(2)$	128
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.02	$2.848(2)$	161

supplementary materials

Fig. 1

Fig. 2

